论文标题

分配切成薄片且应用于生成建模

Distributional Sliced-Wasserstein and Applications to Generative Modeling

论文作者

Nguyen, Khai, Ho, Nhat, Pham, Tung, Bui, Hung

论文摘要

切成薄片的距离距离(SW)及其变体Max Slecrest-wasserstein距离(MAX-SW)在近年来由于其快速计算和可伸缩性即使概率度量在很高的尺寸空间中,也已被广泛使用。但是,SW需要许多不必要的投影样本来近似其值,而Max-SW仅使用最重要的投影,该预测忽略了其他有用方向的信息。为了说明这些弱点,我们提出了一个新颖的距离,称为分布切片式距离(DSW),该距离发现了预测的最佳分布,可以在探索独特的投影方向和预测本身的信息性之间取得平衡。我们表明,DSW是Max-SW的概括,可以通过在单位球体上搜索一组概率度量的最佳推送指标来有效地计算出来,从而满足某些有利于不同方向的正规限制的概率测量。最后,我们对大规模数据集进行了广泛的实验,以证明在生成建模应用中,在先前基于切片的距离中,所提出的距离的表现出色。

Sliced-Wasserstein distance (SW) and its variant, Max Sliced-Wasserstein distance (Max-SW), have been used widely in the recent years due to their fast computation and scalability even when the probability measures lie in a very high dimensional space. However, SW requires many unnecessary projection samples to approximate its value while Max-SW only uses the most important projection, which ignores the information of other useful directions. In order to account for these weaknesses, we propose a novel distance, named Distributional Sliced-Wasserstein distance (DSW), that finds an optimal distribution over projections that can balance between exploring distinctive projecting directions and the informativeness of projections themselves. We show that the DSW is a generalization of Max-SW, and it can be computed efficiently by searching for the optimal push-forward measure over a set of probability measures over the unit sphere satisfying certain regularizing constraints that favor distinct directions. Finally, we conduct extensive experiments with large-scale datasets to demonstrate the favorable performances of the proposed distances over the previous sliced-based distances in generative modeling applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源