论文标题

拓扑优化具有多轴加工的可访问性约束

Topology Optimization with Accessibility Constraint for Multi-Axis Machining

论文作者

Mirzendehdel, Amir M., Behandish, Morad, Nelaturi, Saigopal

论文摘要

在本文中,我们提出了拓扑优化(TO)框架,以实现机械组件的自动设计,同时确保可以使用多轴加工制造结果。尽管为了提高零件的性能,但AS设计的模型通常在几何上太复杂而无法加工,并且由于加工限制因素而没有考虑到期间的加工限制,因此AS-Bunchudured模型可能会大不相同。换句话说,如果没有与零件(或固定装置)相撞的机床,许多优化的设计功能无法通过机床访问。随后的后期处理,可以通过给定设置进行加工的零件,需要试用和解释,而无需保证保留优化的性能。我们提出的方法是基于建立完善的可访问性分析公式,该配置空间中的卷积公式在空间规划和机器人技术中广泛使用。我们在设计域上定义了一个“不可接受的度量字段”(IMF),以识别不可制造的特征并量化其对非制造性的贡献。国际货币基金组织用于惩罚性能目标和约束的灵敏度领域,以防止形成无法接近的区域。与现有的离散配方不同,我们的IMF提供了一个连续的空间场,值得融合。我们的方法适用于零件,工具和固定装置的任意几何复杂性,并且在多核体系结构上高度可行。我们在2D和3D中证明了我们框架对基准和现实示例的有效性。我们还表明,可以根据可访问性信息直接为优化设计构建制造计划。

In this paper, we present a topology optimization (TO) framework to enable automated design of mechanical components while ensuring the result can be manufactured using multi-axis machining. Although TO improves the part's performance, the as-designed model is often geometrically too complex to be machined and the as-manufactured model can significantly vary due to machining constraints that are not accounted for during TO. In other words, many of the optimized design features cannot be accessed by a machine tool without colliding with the part (or fixtures). The subsequent post-processing to make the part machinable with the given setup requires trial-and-error without guarantees on preserving the optimized performance. Our proposed approach is based on the well-established accessibility analysis formulation using convolutions in configuration space that is extensively used in spatial planning and robotics. We define an 'inaccessibility measure field' (IMF) over the design domain to identify non-manufacturable features and quantify their contribution to non-manufacturability. The IMF is used to penalize the sensitivity field of performance objectives and constraints to prevent formation of inaccessible regions. Unlike existing discrete formulations, our IMF provides a continuous spatial field that is desirable for TO convergence. Our approach applies to arbitrary geometric complexity of the part, tools, and fixtures, and is highly parallelizable on multi-core architecture. We demonstrate the effectiveness of our framework on benchmark and realistic examples in 2D and 3D. We also show that it is possible to directly construct manufacturing plans for the optimized designs based on the accessibility information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源