论文标题
财务时间序列预测的有条件共同基于信息的对比损失
Conditional Mutual information-based Contrastive Loss for Financial Time Series Forecasting
论文作者
论文摘要
我们为财务时间序列预测提供了一个代表学习框架。使用深度学习模型进行财务预测的一个挑战是使用小型数据集时可用的培训数据短缺。使用在小数据集上训练的深神经网络的直接趋势分类容易受到过度拟合问题的影响。在本文中,我们建议您首先从时间序列数据中学习紧凑的表示,然后使用学习的表示形式来训练一个更简单的模型来预测时间序列运动。我们考虑一个类带有类的潜在变量模型。我们训练一个编码器网络,以最大化潜在变量与趋势信息之间的相互信息,以根据编码的观测变量进行条件。我们表明,有条件的相互信息最大化可以通过对比损失近似。然后,将问题转换为一个分类任务,以确定是否从同一类采样两个编码表示。这等同于执行训练数据点的成对比较,从而提高了编码器网络的概括能力。我们使用深层自回旋模型作为编码器来捕获序列数据的长期依赖性。经验实验表明,我们提出的方法有可能提高最新性能。
We present a representation learning framework for financial time series forecasting. One challenge of using deep learning models for finance forecasting is the shortage of available training data when using small datasets. Direct trend classification using deep neural networks trained on small datasets is susceptible to the overfitting problem. In this paper, we propose to first learn compact representations from time series data, then use the learned representations to train a simpler model for predicting time series movements. We consider a class-conditioned latent variable model. We train an encoder network to maximize the mutual information between the latent variables and the trend information conditioned on the encoded observed variables. We show that conditional mutual information maximization can be approximated by a contrastive loss. Then, the problem is transformed into a classification task of determining whether two encoded representations are sampled from the same class or not. This is equivalent to performing pairwise comparisons of the training datapoints, and thus, improves the generalization ability of the encoder network. We use deep autoregressive models as our encoder to capture long-term dependencies of the sequence data. Empirical experiments indicate that our proposed method has the potential to advance state-of-the-art performance.