论文标题

可解释的多头注意抽象性摘要以可控制的长度

Interpretable Multi-Headed Attention for Abstractive Summarization at Controllable Lengths

论文作者

Sarkhel, Ritesh, Keymanesh, Moniba, Nandi, Arnab, Parthasarathy, Srinivasan

论文摘要

在可控长度上的抽象性摘要是自然语言处理中的一项艰巨任务。对于可用培训数据有限的域或摘要长度未知的场景的域而言,这更具挑战性。同时,当涉及到信任机器生成的摘要时,解释了如何以人为理解的术语构建的摘要可能至关重要。我们提出了多层摘要(MLS),这是一种监督方法,用于以可控制的长度构造文本文档的抽象性摘要。我们方法的关键推动因素是一种可解释的多头注意机制,该机制使用一系列独立的语义内核来计算输入文档上的注意力分布。每个内核都优化了人类解剖的句法或语义属性。在英语中,对两个低资源数据集进行的详尽实验表明,MLS在流星分数中优于强大的基准高达14.70%。人类对摘要的评估还表明,它们在各种预算中捕获了文档的关键概念。

Abstractive summarization at controllable lengths is a challenging task in natural language processing. It is even more challenging for domains where limited training data is available or scenarios in which the length of the summary is not known beforehand. At the same time, when it comes to trusting machine-generated summaries, explaining how a summary was constructed in human-understandable terms may be critical. We propose Multi-level Summarizer (MLS), a supervised method to construct abstractive summaries of a text document at controllable lengths. The key enabler of our method is an interpretable multi-headed attention mechanism that computes attention distribution over an input document using an array of timestep independent semantic kernels. Each kernel optimizes a human-interpretable syntactic or semantic property. Exhaustive experiments on two low-resource datasets in the English language show that MLS outperforms strong baselines by up to 14.70% in the METEOR score. Human evaluation of the summaries also suggests that they capture the key concepts of the document at various length-budgets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源