论文标题
安德鲁斯·布雷斯德(Andrews-Bressoud)系列和沃斯克人
Andrews-Bressoud series and Wronskians
论文作者
论文摘要
Andrews-Bressoud的身份是$ Q $ SERIES身份的众多家庭之一,将无限款项与无限产品有关。尽管研究这些系列的最初动机与分区有关,但在顶点操作员代数理论中,也可以将它们视为最小模型的不可还原特征。此外,考虑到给定模量的Andrews-Bressoud系列的某些Wronskians会产生额外的$ Q $ series,它们本身具有有趣且可预测的模块化属性。在本文中,我们将Andrews-Bressoud系列连接到模块化形式,并证明其相关的Wronskians的模块化结果。
The Andrews-Bressoud identities are one of many families of $q$-series identities relating an infinite sum to an infinite product. While the original motivation for studying these series relates to partitions, they can also be viewed in relation to irreducible characters of minimal models in the theory of vertex operator algebras. Furthermore, considering certain Wronskians of the Andrews-Bressoud series for a given modulus produces additional $q$-series, which themselves exhibit interesting and predictable modularity properties. In this paper, we connect the Andrews-Bressoud series to modular forms and prove results about the modularity of their associated Wronskians.