论文标题
对廉价小儿阻塞性睡眠呼吸暂停数据应用的统计学习技术的调查
A survey of statistical learning techniques as applied to inexpensive pediatric Obstructive Sleep Apnea data
论文作者
论文摘要
小儿阻塞性睡眠呼吸暂停会影响约1-5%的小学年龄儿童,并可能导致其他有害的健康问题。迅速的诊断和治疗对儿童的成长和发育至关重要,但是症状的变异性以及可用数据的复杂性使这一挑战是一个挑战。我们通过关注来自问卷和颅面测量的廉价数据来简化过程的第一步。我们在探索性数据分析过程中应用了相关网络,拓扑数据分析的映射算法以及奇异值分解。然后,我们从统计学,机器学习和拓扑中应用各种受监督和无监督的学习技术,从支持向量机到贝叶斯分类器和多种学习。最后,我们分析了每种方法的结果,并讨论了对向前发展的多数据源算法的含义。
Pediatric obstructive sleep apnea affects an estimated 1-5% of elementary-school aged children and can lead to other detrimental health problems. Swift diagnosis and treatment are critical to a child's growth and development, but the variability of symptoms and the complexity of the available data make this a challenge. We take a first step in streamlining the process by focusing on inexpensive data from questionnaires and craniofacial measurements. We apply correlation networks, the Mapper algorithm from topological data analysis, and singular value decomposition in a process of exploratory data analysis. We then apply a variety of supervised and unsupervised learning techniques from statistics, machine learning, and topology, ranging from support vector machines to Bayesian classifiers and manifold learning. Finally, we analyze the results of each of these methods and discuss the implications for a multi-data-sourced algorithm moving forward.