论文标题
在量子计算机上扩大电子结构计算:基于冷冻的天然轨道增量方法
Scaling Up Electronic Structure Calculations on Quantum Computers: The Frozen Natural Orbital Based Method of Increments
论文作者
论文摘要
引入了增量和冷冻天然轨道(MI-FNO)框架的方法,以帮助加快用于量子化学模拟的嘈杂,中等规模的量子〜(NISQ)设备的应用。 Mi-FNO框架为量子化学模拟的占用和虚拟轨道空间进行了系统的减少。然后,可以通过各种算法(包括量子算法,例如相位估计算法和变异量子eigensolver(VQE))来求解从Mi-FNO还原产生的增量的相关能量。使用CC-PVDZ基础集,使用CC-PVDZ基础集合,使用统一的耦合群集单打和Doubles VQE框架VQE框架用于获得小分子的相关能量(即Beh $ _2 $,CH $ _4 $,NH $ _3 $,H $ _2 $ O和HF)。量子资源需求估计用于在工业环境中用于$α$ -olefins聚合的约束几何复合物(CGC)催化剂。我们表明,相对于完整的系统模拟,Mi-FNO方法可显着减少量子要求。我们建议Mi-FNO框架可以创建适合评估NISQ设备进度的量子化学问题的可扩展示例。
The method of increments and frozen natural orbital (MI-FNO) framework is introduced to help expedite the application of noisy, intermediate-scale quantum~(NISQ) devices for quantum chemistry simulations. The MI-FNO framework provides a systematic reduction of the occupied and virtual orbital spaces for quantum chemistry simulations. The correlation energies of the resulting increments from the MI-FNO reduction can then be solved by various algorithms, including quantum algorithms such as the phase estimation algorithm and the variational quantum eigensolver (VQE). The unitary coupled-cluster singles and doubles VQE framework is used to obtain correlation energies for the case of small molecules (i.e., BeH$_2$, CH$_4$, NH$_3$, H$_2$O, and HF) using the cc-pVDZ basis set. The quantum resource requirements are estimated for a constrained geometry complex (CGC) catalyst that is utilized in industrial settings for the polymerization of $α$-olefins. We show that the MI-FNO approach provides a significant reduction in the qubit requirements relative to the full system simulations. We propose that the MI-FNO framework can create scalable examples of quantum chemistry problems that are appropriate for assessing the progress of NISQ devices.