论文标题

神经结构搜索故障诊断

Neural Architecture Search For Fault Diagnosis

论文作者

Li, Xudong, Hu, Yang, Zheng, Jianhua, Li, Mingtao

论文摘要

数据驱动的方法在故障诊断方面取得了巨大进展,尤其是深度学习方法。深度学习适合处理大数据,并且具有实现端到端故障诊断系统的强大提取能力。但是,设计神经网络体系结构需要丰富的专业知识和调试经验,并且需要大量实验来筛选模型和超参数,从而增加了开发深度学习模型的困难。 Frort,神经建筑搜索(NAS)正在迅速发展,并且正在成为深度学习的下一个方向之一。在本文中,我们提出了一种使用加强学习的NAS方法来进行故障诊断。复发性神经网络用作生成网络体系结构的代理。验证数据集上生成的网络的准确性作为奖励回馈给代理,并且代理的参数通过策略梯度算法进行更新。我们使用PHM 2009数据挑战变速箱数据集来证明提出的方法的有效性,并获得与其他人工设计的网络结构相比,获得最先进的结果。据作者的最佳知识,这是NAS首次应用于故障诊断。

Data-driven methods have made great progress in fault diagnosis, especially deep learning method. Deep learning is suitable for processing big data, and has a strong feature extraction ability to realize end-to-end fault diagnosis systems. However, designing neural network architecture requires rich professional knowledge and debugging experience, and a lot of experiments are needed to screen models and hyperparameters, increasing the difficulty of developing deep learning models. Frortunately, neural architecture search (NAS) is developing rapidly, and is becoming one of the next directions for deep learning. In this paper, we proposed a NAS method for fault diagnosis using reinforcement learning. A recurrent neural network is used as an agent to generate network architecture. The accuracy of the generated network on the validation dataset is fed back to the agent as a reward, and the parameters of the agent are updated through the strategy gradient algorithm. We use PHM 2009 Data Challenge gearbox dataset to prove the effectiveness of proposed method, and obtain state-of-the-art results compared with other artificial designed network structures. To author's best knowledge, it's the first time that NAS has been applied in fault diagnosis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源