论文标题

真空和介质介质中麦克斯韦方程的统一量子晶格模拟

Unitary Quantum Lattice Simulations for Maxwell Equations in Vacuum and in Dielectric Media

论文作者

Vahala, George, Vahala, Linda, Soe, Min, Ram, Abhay

论文摘要

自从相对论量子力学早期以来,使用DIRAC方程的旋转表示和麦克斯韦方程之间的相似性,麦克斯韦方程的单一碰撞流操作员的量子晶格(QLA)表示是同质和不均匀媒体的。开发了第二阶精确的4个旋转方案,并成功测试了在均匀培养基中的高斯脉冲的两维(2d)传播,而对于介电界面上的电磁高斯脉冲(1D)的发生率(1D)的发生率需要8个组件旋转器。特别是,QLA渐近谱恢复了众所周知的相变,场幅度和轮廓宽度。当脉冲进入并跨越介电边界时,QLA模拟产生了依赖时间的电磁场。 QLA涉及可以编码在量子计算机上的统一交织的非交易碰撞和流媒体操作员。非概念是一个人扰动恢复麦克斯韦方程的唯一原因。

Utilizing the similarity between the spinor representation of the Dirac equation and the Maxwell equations that has been recognized since the early days of relativistic quantum mechanics, a quantum lattice (QLA) representation of unitary collision stream operators of Maxwell equations is derived for both homogeneous and inhomogeneous media. A second order accurate 4 spinor scheme is developed and tested successfully for two dimensional (2D) propagation of a Gaussian pulse in a uniform medium while for normal (1D) incidence of an electromagnetic Gaussian pulse onto a dielectric interface requires 8 component spinors. In particular, the well-known phase change, field amplitudes and profile widths are recovered by the QLA asymptotic profiles. The QLA simulations yield the time dependent electromagnetic fields as the pulse enters and straddles the dielectric boundary. QLA involves unitary interleaved noncommuting collision and streaming operators that can be coded onto a quantum computer. The noncommutation being the only reason why one perturbatively recovers the Maxwell equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源