论文标题

通过歧视歧管嵌入和对齐方式适应无监督的域

Unsupervised Domain Adaptation via Discriminative Manifold Embedding and Alignment

论文作者

Luo, You-Wei, Ren, Chuan-Xian, Ge, Pengfei, Huang, Ke-Kun, Yu, Yu-Feng

论文摘要

无监督的域适应性可有效利用从源域到无监督目标域的丰富信息。尽管深度学习和对抗性策略在功能的适应性上是一个重要的突破,但还有两个问题需要进一步探讨。首先,目标域上的硬分配的伪标签对固有数据结构是有风险的。其次,以深度学习的批次培训方式限制了全球结构的描述。在本文中,提出了Riemannian流形学习框架,以始终如一地实现可转移性和可区分性。至于第一个问题,该方法通过软标签在目标域上建立了概率的判别标准。此外,该标准扩展到第二期的全球近似方案。这样的近似也是保存内存的。利用歧管度量对齐方式与嵌入空间兼容。得出理论误差以促进对齐。已经进行了广泛的实验来研究比较研究的建议和结果,这表明了一致的流形学习框架的优越性。

Unsupervised domain adaptation is effective in leveraging the rich information from the source domain to the unsupervised target domain. Though deep learning and adversarial strategy make an important breakthrough in the adaptability of features, there are two issues to be further explored. First, the hard-assigned pseudo labels on the target domain are risky to the intrinsic data structure. Second, the batch-wise training manner in deep learning limits the description of the global structure. In this paper, a Riemannian manifold learning framework is proposed to achieve transferability and discriminability consistently. As to the first problem, this method establishes a probabilistic discriminant criterion on the target domain via soft labels. Further, this criterion is extended to a global approximation scheme for the second issue; such approximation is also memory-saving. The manifold metric alignment is exploited to be compatible with the embedding space. A theoretical error bound is derived to facilitate the alignment. Extensive experiments have been conducted to investigate the proposal and results of the comparison study manifest the superiority of consistent manifold learning framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源