论文标题

参数模型的渐近最佳偏差减少

Asymptotically Optimal Bias Reduction for Parametric Models

论文作者

Guerrier, Stéphane, Karemera, Mucyo, Orso, Samuel, Victoria-Feser, Maria-Pia

论文摘要

统计分析中的一个重要挑战涉及控制估计器的有限样品偏差。在高维设置中,该问题被放大,其中变量$ p $带有样本尺寸$ n $的数量,以及具有离散数据的非线性模型和/或模型。对于这些复杂的设置,我们建议使用基于一般仿真的方法,并表明所得估计器的偏差$ \ MATHCAL {O}(0)$,因此提供了渐近的最佳偏置降低。它基于一个初始估计器,该估计器可能会略有渐近,从而使该方法通常适用。当经典估计器(例如最大似然估计器)只能(数值上)近似时,这尤其重要。我们表明,Kuk(1995)的迭代引导程序提供了一种计算有效的方法来计算这种偏差减少估计器。我们在模拟研究中说明了我们的理论结果,我们为逻辑回归而开发新的偏见减少了估计量,有或没有随机效应。这些估计器享有其他属性,例如对数据污染的鲁棒性和可分离性问题。

An important challenge in statistical analysis concerns the control of the finite sample bias of estimators. This problem is magnified in high-dimensional settings where the number of variables $p$ diverges with the sample size $n$, as well as for nonlinear models and/or models with discrete data. For these complex settings, we propose to use a general simulation-based approach and show that the resulting estimator has a bias of order $\mathcal{O}(0)$, hence providing an asymptotically optimal bias reduction. It is based on an initial estimator that can be slightly asymptotically biased, making the approach very generally applicable. This is particularly relevant when classical estimators, such as the maximum likelihood estimator, can only be (numerically) approximated. We show that the iterative bootstrap of Kuk (1995) provides a computationally efficient approach to compute this bias reduced estimator. We illustrate our theoretical results in simulation studies for which we develop new bias reduced estimators for the logistic regression, with and without random effects. These estimators enjoy additional properties such as robustness to data contamination and to the problem of separability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源