论文标题

为数据密集型,科学应用开发抽象的方法和经验

Methods and Experiences for Developing Abstractions for Data-intensive, Scientific Applications

论文作者

Luckow, Andre, Jha, Shantenu

论文摘要

为科学应用程序开发软件,这些软件需要整合各种类型的计算,工具和数据,提出了与商业软件不同的挑战。这些应用需要规模,并且需要将各种编程和计算模型与不断发展和异构基础架构整合在一起。因此,对分布式基础设施的普遍有效的抽象至关重要。但是,为科学应用和基础设施开发抽象的过程尚不清楚。尽管基于理论的系统开发方法适用于定义明确的封闭环境,但它们在为科学系统和应用设计抽象设计方面存在严格的限制。设计科学研究(DSR)方法为设计可以在各个级别上处理现实世界复杂性的实用系统提供了基础。与以理论为中心的方法相反,DSR通过构建和严格评估所有文物来强调实际相关性和知识创造。我们展示了DSR如何为开发分布式系统开发抽象和中间件系统的定义明确的框架。具体而言,我们解决了在动态范围内分布式资源管理在异质基础架构上的关键问题,这一挑战目前限制了许多科学应用。我们使用Pilot-Abstraction,这是一种广泛使用的资源管理抽象,用于高性能,高吞吐量,大数据和流媒体应用程序,作为评估DSR活动的案例研究。为此,我们分析了在试验性能的设计和评估过程中产生的研究过程和工件。我们发现DSR为迭代设计和评估系统提供了简洁的框架。最后,我们捕捉了我们的经验,并提出了不同的经验教训。

Developing software for scientific applications that require the integration of diverse types of computing, instruments, and data present challenges that are distinct from commercial software. These applications require scale, and the need to integrate various programming and computational models with evolving and heterogeneous infrastructure. Pervasive and effective abstractions for distributed infrastructures are thus critical; however, the process of developing abstractions for scientific applications and infrastructures is not well understood. While theory-based approaches for system development are suited for well-defined, closed environments, they have severe limitations for designing abstractions for scientific systems and applications. The design science research (DSR) method provides the basis for designing practical systems that can handle real-world complexities at all levels. In contrast to theory-centric approaches, DSR emphasizes both practical relevance and knowledge creation by building and rigorously evaluating all artifacts. We show how DSR provides a well-defined framework for developing abstractions and middleware systems for distributed systems. Specifically, we address the critical problem of distributed resource management on heterogeneous infrastructure over a dynamic range of scales, a challenge that currently limits many scientific applications. We use the pilot-abstraction, a widely used resource management abstraction for high-performance, high throughput, big data, and streaming applications, as a case study for evaluating the DSR activities. For this purpose, we analyze the research process and artifacts produced during the design and evaluation of the pilot-abstraction. We find DSR provides a concise framework for iteratively designing and evaluating systems. Finally, we capture our experiences and formulate different lessons learned.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源