论文标题

使用LSTM在儿童大脑MRI上使用LSTM进行脑年龄估计

Brain Age Estimation Using LSTM on Children's Brain MRI

论文作者

He, Sheng, Gollub, Randy L., Murphy, Shawn N., Perez, Juan David, Prabhu, Sanjay, Pienaar, Rudolph, Robertson, Richard L., Grant, P. Ellen, Ou, Yangming

论文摘要

基于儿童大脑MRI的大脑年龄预测是大脑健康和大脑发育分析的重要生物标志物。在本文中,我们将3D脑MRI体积视为2D图像的序列,并使用复发性神经网络提出了一个新框架,以进行大脑年龄估计。所提出的方法被命名为2D-Resnet18+长短期内存(LSTM),该记忆由四个部分:2D Resnet18组成,用于2D图像上的特征提取,序列上的特征降低,LSTM层,LSTM层和最终回归层。我们将提出的方法应用于公共多站点NIH-PD数据集,并评估第二个多站点数据集上的概括,这表明所提出的2D-Resnet18+LSTM方法比传统的基于3D的神经网络对脑年龄估计提供了更好的结果。

Brain age prediction based on children's brain MRI is an important biomarker for brain health and brain development analysis. In this paper, we consider the 3D brain MRI volume as a sequence of 2D images and propose a new framework using the recurrent neural network for brain age estimation. The proposed method is named as 2D-ResNet18+Long short-term memory (LSTM), which consists of four parts: 2D ResNet18 for feature extraction on 2D images, a pooling layer for feature reduction over the sequences, an LSTM layer, and a final regression layer. We apply the proposed method on a public multisite NIH-PD dataset and evaluate generalization on a second multisite dataset, which shows that the proposed 2D-ResNet18+LSTM method provides better results than traditional 3D based neural network for brain age estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源