论文标题
无限维平衡液体的动态平均场理论的数值解
Numerical solution of the dynamical mean field theory of infinite-dimensional equilibrium liquids
论文作者
论文摘要
我们提出了在[Phys。莱特牧师。 116,015902(2016)]。对于软球相互作用,我们通过迭代算法和时间的直接离散化获得数值解。我们还讨论了硬球的案例,为此我们首先在分析中得出动态平均场理论,作为软球的非平凡限制。我们提出了内存函数和均方位移的数值结果。我们的结果在稀释或短时间的极限中繁殖并扩展动力学理论,同时它们还描述了朝向玻璃相的动力停滞,以密集的强烈相互交互的状态。
We present a numerical solution of the dynamical mean field theory of infinite-dimensional equilibrium liquids established in [Phys. Rev. Lett. 116, 015902 (2016)]. For soft sphere interactions, we obtain the numerical solution by an iterative algorithm and a straightforward discretization of time. We also discuss the case of hard spheres, for which we first derive analytically the dynamical mean field theory as a non-trivial limit of the soft sphere one. We present numerical results for the memory function and the mean square displacement. Our results reproduce and extend kinetic theory in the dilute or short-time limit, while they also describe dynamical arrest towards the glass phase in the dense strongly-interacting regime.