论文标题

顺序的下次化最大化和对产品进行排名的应用

Sequential Submodular Maximization and Applications to Ranking an Assortment of Products

论文作者

Asadpour, Arash, Niazadeh, Rad, Saberi, Amin, Shameli, Ali

论文摘要

我们研究由在线零售中的应用激励的次生次数最大化问题。一个平台向用户显示搜索查询的产品列表。用户检查列表中的第一个$ k $项目是否从给定发行版中随机选择了$ k $,并决定是否基于选择模型从该集合购买项目。该平台的目的是最大程度地提高购物者的参与度定义为购买的可能性。这个问题引起了较少研究的子模化最大化的变化,其中要求我们选择一组元素的$ \ textit {order {order} $,以最大化不同的suppoular函数的线性组合。 首先,使用减少功能来最大程度地提高矩阵的次世函数,我们给出了此问题的最佳$ \ left(1-1/e \ right)$ - 近似值。然后,我们考虑了一个变体,该变体不仅关心用户参与度,而且关心各种用户群体的多元化,也就是说,可以保证每个组的购买可能性。我们表征了可行解决方案的多元化,并给出了双标准$((1-1/e)^2,(1-1/e)^2)$ - 通过将线性编程松弛的近似解决方案舍入近似值。为了进行舍入,我们依靠还原和针对矩形多面体的特定圆形技术。对于基本的下一个功能是覆盖范围功能(实际上与在线零售相关的特殊情况),我们提出了一种替代性LP放松,并且针对该问题进行了更简单的随机舍入。此方法得出最佳的双标准$(1-1/e,1-1/e)$ - 近似算法,用于覆盖功能的特殊情况。

We study a submodular maximization problem motivated by applications in online retail. A platform displays a list of products to a user in response to a search query. The user inspects the first $k$ items in the list for a $k$ chosen at random from a given distribution, and decides whether to purchase an item from that set based on a choice model. The goal of the platform is to maximize the engagement of the shopper defined as the probability of purchase. This problem gives rise to a less-studied variation of submodular maximization in which we are asked to choose an $\textit{ordering}$ of a set of elements to maximize a linear combination of different submodular functions. First, using a reduction to maximizing submodular functions over matroids, we give an optimal $\left(1-1/e\right)$-approximation for this problem. We then consider a variant in which the platform cares not only about user engagement, but also about diversification across various groups of users, that is, guaranteeing a certain probability of purchase in each group. We characterize the polytope of feasible solutions and give a bi-criteria $((1-1/e)^2,(1-1/e)^2)$-approximation for this problem by rounding an approximate solution of a linear programming relaxation. For rounding, we rely on our reduction and the particular rounding techniques for matroid polytopes. For the special case in which underlying submodular functions are coverage functions -- which is practically relevant in online retail -- we propose an alternative LP relaxation and a simpler randomized rounding for the problem. This approach yields to an optimal bi-criteria $(1-1/e,1-1/e)$-approximation algorithm for the special case of the problem with coverage functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源