论文标题
多个正交大地和弦和Seifert在制动轨道上的猜想证明
Multiple orthogonal geodesic chords and a proof of Seifert's conjecture on brake orbits
论文作者
论文摘要
使用非平滑临界点理论,我们证明在一类具有强凹边界的Riemannian n磁盘中至少存在正交的大地和弦。这产生了H.Seifert对天然拉格朗日/哈密顿系统潜在井中的制动轨道数量的著名猜想的证明。
Using nonsmooth critical point theory, we prove the existence of at least N orthogonal geodesic chords in a class of Riemannian N-disk with strongly concave boundary. This yields a proof of a celebrated conjecture by H.Seifert on the number of brake orbits in a potential well of a natural Lagrangian/Hamiltonian system.