论文标题
根据k因子,线性依赖和简洁的子集
Linearly dependent and concise subsets of a Segre variety depending on k factors
论文作者
论文摘要
我们研究具有多注射空间的规定基数($ s $)的线性依赖性子集。如果集合$ s $是电路,我们会给包含$ s $的最小多注射空间的因素数量,而如果$ s $具有较高的依赖性,那么如果没有强有力的假设,这可能是不正确的。我们描述了$ \#s = 6 $的因子子集$ s $。
We study linearly dependent subsets with prescribed cardinality, $s$, of a multiprojective space. If the set $S$ is a circuit, we give an upper bound on the number of factors of the minimal multiprojective space containing $S$, while if $S$ has higher dependency this may be not true without strong assumptions. We describe the dependent subsets $S$ with $\#S=6$.