论文标题
计算经济最佳和稳定的平衡,用于下垂控制的微电网
Computing Economic-Optimal and Stable Equilibria for Droop-Controlled Microgrids
论文作者
论文摘要
我们考虑了计算平衡(稳态)的问题,用于下垂控制的,岛的AC微电网,这些微电网既是经济最佳且动态稳定的。这项工作是由观察到的,即用于经济优化的经典最佳功率流(OPF)公式可能会提供低级控制器无法达到的平衡(即闭环不稳定)。之所以出现这一点,是因为OPF问题仅强制执行稳态条件,并且不会捕获动态。我们通过使用哈米尔顿港微电网表示来解释这种行为。为了克服OPF的局限性,可以利用哈米尔顿港的代表制度来得出一种双重OPF公式,该公式试图在执行稳定性的同时优化经济学。不幸的是,通常难以解决具有非凸内部问题的双重优化。因此,我们提出了一种替代方法(我们称探测OPF),该方法通过使用随机扰动来探测平衡的邻居来确定经济最佳和稳定的平衡。探测OPF是有利的,因为它是标准的非线性程序,因为它与现有的OPF框架兼容,并且它适用于不同的微电网模型。使用IEEE 118总线系统的实验表明,执行稳定性几乎没有探测点。
We consider the problem of computing equilibria (steady-states) for droop-controlled, islanded, AC microgrids that are both economic-optimal and dynamically stable. This work is motivated by the observation that classical optimal power flow (OPF) formulations used for economic optimization might provide equilibria that are not reachable by low-level controllers (i.e., closed-loop unstable). This arises because OPF problems only enforce steady-state conditions and do not capture the dynamics. We explain this behavior by using a port-Hamiltonian microgrid representation. To overcome the limitations of OPF, the port-Hamiltonian representation can be exploited to derive a bilevel OPF formulation that seeks to optimize economics while enforcing stability. Unfortunately, bilevel optimization with a nonconvex inner problem is difficult to solve in general. As such, we propose an alternative approach (that we call probing OPF), which identifies an economic-optimal and stable equilibrium by probing a neighborhood of equilibria using random perturbations. The probing OPF is advantageous in that it is formulated as a standard nonlinear program, in that it is compatible with existing OPF frameworks, and in that it is applicable to diverse microgrid models. Experiments with the IEEE 118-bus system reveal that few probing points are required to enforce stability.