论文标题
在相关的Bernoulli随机图模型的完整统计数据上
On a complete and sufficient statistic for the correlated Bernoulli random graph model
论文作者
论文摘要
对顶点对准图的推断具有广泛的理论和实际重要性。但是,对于相关图,很少有灵活且可拖动的统计模型,甚至更少的综合方法可以从此类图中引起的数据进行参数推断。在本文中,我们考虑了相关的bernoulli随机图模型(允许不同的伯努利系数和不同顶点对的边缘相关性),并且我们引入了一种新的减少方差的技术 - 称为\ emph {balancing {balancation} - 它可以用于模型参数来完善模型参数。具体而言,我们构建了分歧统计数据,并表明它是完整和足够的。平衡可以用这种分歧统计来解释为rao-blackwellization。我们表明,对于模型参数功能的无偏估计量,平衡会产生统一的最小方差无偏估计器(UMVUE)。但是,即使模型参数的无偏估计器确实存在{\ em not} - 正如我们证明的那样,异质性相关性和总相关参数都是这种情况,平衡仍然很有用,并且平均平方误差降低。特别是,我们证明了平衡如何提高总相关的比对强度估计器的效率,该参数在图形对可匹配性和图形匹配运行时复杂性中起着至关重要的作用。
Inference on vertex-aligned graphs is of wide theoretical and practical importance.There are, however, few flexible and tractable statistical models for correlated graphs, and even fewer comprehensive approaches to parametric inference on data arising from such graphs. In this paper, we consider the correlated Bernoulli random graph model (allowing different Bernoulli coefficients and edge correlations for different pairs of vertices), and we introduce a new variance-reducing technique -- called \emph{balancing} -- that can refine estimators for model parameters. Specifically, we construct a disagreement statistic and show that it is complete and sufficient; balancing can be interpreted as Rao-Blackwellization with this disagreement statistic. We show that for unbiased estimators of functions of model parameters, balancing generates uniformly minimum variance unbiased estimators (UMVUEs). However, even when unbiased estimators for model parameters do {\em not} exist -- which, as we prove, is the case with both the heterogeneity correlation and the total correlation parameters -- balancing is still useful, and lowers mean squared error. In particular, we demonstrate how balancing can improve the efficiency of the alignment strength estimator for the total correlation, a parameter that plays a critical role in graph matchability and graph matching runtime complexity.