论文标题
克莱恩 - 戈登和狄拉克量子场理论的热状态的相对纠缠熵
Relative entanglement entropy of thermal states of Klein-Gordon and Dirac quantum field theories
论文作者
论文摘要
在两个区域的线性,巨大的klein-gordon和dirac量子场理论的反向温度$β$上,热状态的相对纠缠熵的上限在两个区域的cauchy超脉冲中的非零距离$ d $隔开。这种纠缠措施受负恒定时间$ \ ln |的界定。 \ tanh(πd/ 2β)| $表示渐近$ d $的功率定律衰减,其中指数依赖于$β<\ iffty $。
An upper bound of the relative entanglement entropy of thermal states at an inverse temperature $β$ of linear, massive Klein-Gordon and Dirac quantum field theories across two regions, separated by a nonzero distance $d$ in a Cauchy hypersurface of an ultrastatic (spin-)spacetime has been computed. This entanglement measure is bounded by a negative constant times $\ln | \tanh (πd/ 2 β) |$ which signifies power law decay for asymptotic $d$ where the exponent depends on $β< \infty$.