论文标题
通过最后一个通用渗透的双重性多项式
Dual Grothendieck polynomials via last-passage percolation
论文作者
论文摘要
对称函数环的基础是双重粒度多项式的基础,这些多项式是不均匀的$ k $ - schur多项式的理论变形。我们证明,双重粒度多项式确定了定向最后一个通用渗透模型的柱分布。
The ring of symmetric functions has a basis of dual Grothendieck polynomials that are inhomogeneous $K$-theoretic deformations of Schur polynomials. We prove that dual Grothendieck polynomials determine column distributions for a directed last-passage percolation model.