论文标题
打结的亚历山大不变的小组表示
Twisted Alexander invariants of knot group representations
论文作者
论文摘要
鉴于从结组到固定组的同态,我们引入了$ k_1 $ - 组的元素,这是(扭曲)亚历山大多项式的概括。我们将此$ k_1 $类与其他亚历山大多项式进行了比较。就半本地环而言,我们计算一些结的$ k_1 $类别,并显示它们的非平凡性。我们还引入了亚历山大的亚历山大多项式。
Given a homomorphism from a knot group to a fixed group, we introduce an element of a $K_1$-group, which is a generalization of (twisted) Alexander polynomials. We compare this $K_1$-class with other Alexander polynomials. In terms of semi-local rings, we compute the $K_1$-classes of some knots and show their non-triviality. We also introduce metabelian Alexander polynomials.