论文标题
特殊的Lagrangians,Lagrangian平均曲率流和Gibbons-Hawking Ansatz
Special Lagrangians, Lagrangian mean curvature flow and the Gibbons-Hawking ansatz
论文作者
论文摘要
吉本斯·安萨兹(Gibbons-Hawking Ansatz)为圆形不变的hyperkaehler 4-manifolds提供了大型家族,因此Calabi-yau 2倍。在这种情况下,我们证明了托马斯猜想的版本是关于拉格朗日人的哈密顿同位素类别的特殊拉格朗日代表,以及对长期存在拉格朗日平均曲率流的长期存在的托马斯·考构想。我们还对封闭的大地测量学,曲线缩短流量和最小表面进行了观察。
The Gibbons-Hawking ansatz provides a large family of circle-invariant hyperkaehler 4-manifolds, and thus Calabi-Yau 2-folds. In this setting, we prove versions of the Thomas conjecture on existence of special Lagrangian representatives of Hamiltonian isotopy classes of Lagrangians, and the Thomas-Yau conjecture on long-time existence of the Lagrangian mean curvature flow. We also make observations concerning closed geodesics, curve shortening flow and minimal surfaces.