论文标题
双镜下降用于在线分配问题
Dual Mirror Descent for Online Allocation Problems
论文作者
论文摘要
我们考虑使用凹入收入功能和资源限制的在线分配问题,这是收入管理和在线广告中的核心问题。在这些设置中,请求在有限的视野中依次到达,对于每个请求,决策者需要选择一个消耗一定数量资源并产生收入的操作。每个请求的收入功能和资源消耗是独立绘制的,并从决策者未知的概率分布中随机绘制。目的是最大化累积收入受到资源总消费的限制。 我们设计了一类算法类别,这些算法与事后最佳分配相比实现了次线性预期的遗憾。我们的算法在Lagrangian双重空间中运行:它们为每个资源保持双重乘法器,该乘数使用在线镜像下降进行更新。通过相应地选择参考函数,我们恢复了双重梯度下降和双指数重量算法。所得算法是简单,高效的,并且在地平线的长度和初始资源数量被按比例地缩放时,可以达到最佳的后悔顺序。我们讨论了重复拍卖的在线招标的申请,并具有预算限制和与高熵的在线比例匹配。
We consider online allocation problems with concave revenue functions and resource constraints, which are central problems in revenue management and online advertising. In these settings, requests arrive sequentially during a finite horizon and, for each request, a decision maker needs to choose an action that consumes a certain amount of resources and generates revenue. The revenue function and resource consumption of each request are drawn independently and at random from a probability distribution that is unknown to the decision maker. The objective is to maximize cumulative revenues subject to a constraint on the total consumption of resources. We design a general class of algorithms that achieve sub-linear expected regret compared to the hindsight optimal allocation. Our algorithms operate in the Lagrangian dual space: they maintain a dual multiplier for each resource that is updated using online mirror descent. By choosing the reference function accordingly, we recover dual sub-gradient descent and dual exponential weights algorithm. The resulting algorithms are simple, efficient, and shown to attain the optimal order of regret when the length of the horizon and the initial number of resources are scaled proportionally. We discuss applications to online bidding in repeated auctions with budget constraints and online proportional matching with high entropy.