论文标题
通过切片间隔扩散编码(侧)的扩散MRI的多胎加速度
Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion Encoding (SIDE)
论文作者
论文摘要
扩散MRI(DMRI)是一种独特的成像技术,用于组织微观结构和白质途径的体内表征。但是,其相对较长的收集时间意味着在成像时(例如婴儿和帕金森病患者)的运动伪影。为了加速DMRI获取,我们在本文(i)提议的(i)一个扩散编码方案,称为切片间交流的扩散(侧),使每个扩散加权(DW)图像体积与切片与与不同的扩散梯度相关的片段,从本质上相关,使SLICE-MUND-diffient in slice-diffient in slice-diffient in slice-diffient in slice-diffient in slice samples&splice bundibless缩短图像,从而使图像范围与图像相关范围很大(ii)一种基于深度学习的方法,以有效地重建DW图像,从高度切片的采样数据中。基于人类Connectome项目(HCP)数据集的评估表明,我们的方法可以达到高达6的高加速度因子,而信息损失最小。使用侧采集获得的DMRI数据进行评估表明,与多波段成像结合使用时,可以将采集加速多达50倍。
Diffusion MRI (dMRI) is a unique imaging technique for in vivo characterization of tissue microstructure and white matter pathways. However, its relatively long acquisition time implies greater motion artifacts when imaging, for example, infants and Parkinson's disease patients. To accelerate dMRI acquisition, we propose in this paper (i) a diffusion encoding scheme, called Slice-Interleaved Diffusion Encoding (SIDE), that interleaves each diffusion-weighted (DW) image volume with slices that are encoded with different diffusion gradients, essentially allowing the slice-undersampling of image volume associated with each diffusion gradient to significantly reduce acquisition time, and (ii) a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data. Evaluation based on the Human Connectome Project (HCP) dataset indicates that our method can achieve a high acceleration factor of up to 6 with minimal information loss. Evaluation using dMRI data acquired with SIDE acquisition demonstrates that it is possible to accelerate the acquisition by as much as 50 folds when combined with multi-band imaging.