论文标题
1D LSM定理的基本证明
An elementary proof of 1D LSM theorems
论文作者
论文摘要
Lieb-Schultz-Mattis(LSM)定理及其概括禁止在存在某些晶格和内部对称性的情况下存在独特的间隙基态,因此对量子多体系统的低能特性施加了强大的约束。我们使用矩阵乘积状态表示和组的表示理论提供了一类广义LSM定理的基本证明。
The Lieb-Schultz-Mattis (LSM) theorem and its generalizations forbids the existence of a unique gapped ground state in the presence of certain lattice and internal symmetries and thus imposes powerful constraints on the low energy properties of quantum many-body systems. We provide an elementary proof of a class of generalized LSM theorems in 1D using matrix product state representations and the representation theory of groups.