论文标题

在智能机器人辅助环境中基于小波的人类活动的基于小波的时间模型

Wavelet-based temporal models of human activity for anomaly detection in smart robot-assisted environments

论文作者

Fernandez-Carmona, Manuel, Mghames, Sariah, Bellotto, Nicola

论文摘要

抽象的。在许多实际应用中,在传感器数据模式中检测异常是很重要的,包括为主动辅助生活(AAL)监测家庭活动。但是,如何代表和分析这些模式仍然是一项具有挑战性的任务,尤其是当数据相对较少并且需要对特定情况进行微观模型进行微调时。因此,本文为使用智能家庭传感器的长期人类活动的时间建模提出了一种新的方法,该方法用于在机器人辅助环境中检测异常情况。该模型基于小波变换,并用于预测智能传感器数据,并在检测人类环境中的意外事件之前提供了时间。为此,已经开发了合并不同异常指标的混合马尔可夫逻辑网络的新扩展,包括由二进制传感器检测到的活动,专家逻辑规则和基于小波的时间模型。后者尤其允许推理系统发现与长期活动模式的偏差,这些模式无法通过更简单的基于频率的模型来检测。使用几个智能传感器收集了两个新的公开数据集,以评估办公室和国内场景中的方法。实验结果证明了拟议的解决方案的有效性及其在复杂的人类环境中的成功部署,展示了其未来智能家庭和机器人综合服务的潜力。

Abstract. Detecting anomalies in patterns of sensor data is important in many practical applications, including domestic activity monitoring for Active Assisted Living (AAL). How to represent and analyse these patterns, however, remains a challenging task, especially when data is relatively scarce and an explicit model is required to be fine-tuned for specific scenarios. This paper, therefore, presents a new approach for temporal modelling of long-term human activities with smart-home sensors, which is used to detect anomalous situations in a robot-assisted environment. The model is based on wavelet transforms and used to forecast smart sensor data, providing a temporal prior to detect unexpected events in human environments. To this end, a new extension of Hybrid Markov Logic Networks has been developed that merges different anomaly indicators, including activities detected by binary sensors, expert logic rules, and wavelet-based temporal models. The latter in particular allows the inference system to discover deviations from long-term activity patterns, which cannot be detected by simpler frequency-based models. Two new publicly available datasets were collected using several smart-sensors to evaluate the approach in office and domestic scenarios. The experimental results demonstrate the effectiveness of the proposed solutions and their successful deployment in complex human environments, showing their potential for future smart-home and robot integrated services.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源