论文标题

使用GPU架构的高能物理粒子跟踪和解码的平行计算算法

A parallel-computing algorithm for high-energy physics particle tracking and decoding using GPU architectures

论文作者

Declara, Placido Fernandez, Pérez, Daniel Hugo Cámpora, Garcia-Blas, Javier, Bruch, Dorothea vom, Garcia, J. Daniel, Neufeld, Niko

论文摘要

实时数据处理是需要大量计算资源的粒子物理实验的中心过程之一。 LHCB(大型强子对撞机)实验将升级,以应对每秒3000万次的粒子碰撞率,产生$ 10^9 $颗粒/s。需要实时处理40个TBITS/S,以制定过滤决策以存储数据。这提出了一个计算挑战,需要探索现代硬件和软件解决方案。我们提出指南针,一种跟踪算法的粒子和针对GPU优化的平行原始输入解码。它专为高度并联体系结构设计,面向数据和优化,用于快速和局部数据访问。我们的算法是可配置的,我们探讨了各种配置的计算和物理性能的权衡。提出了与我们的GPU实现相同的物理性能的CPU实现。我们讨论实现的物理性能并使用蒙特卡洛模拟数据验证它。我们显示了比较消费者和服务器等级GPU以及CPU的计算性能分析。我们显示了使用完整的GPU解码和粒子跟踪算法进行高通量粒子轨迹重建的可行性,与LHCB基线相比,我们的算法将吞吐量提高到最高7.4 $ \ times $。

Real-time data processing is one of the central processes of particle physics experiments which require large computing resources. The LHCb (Large Hadron Collider beauty) experiment will be upgraded to cope with a particle bunch collision rate of 30 million times per second, producing $10^9$ particles/s. 40 Tbits/s need to be processed in real-time to make filtering decisions to store data. This poses a computing challenge that requires exploration of modern hardware and software solutions. We present Compass, a particle tracking algorithm and a parallel raw input decoding optimised for GPUs. It is designed for highly parallel architectures, data-oriented and optimised for fast and localised data access. Our algorithm is configurable, and we explore the trade-off in computing and physics performance of various configurations. A CPU implementation that delivers the same physics performance as our GPU implementation is presented. We discuss the achieved physics performance and validate it with Monte Carlo simulated data. We show a computing performance analysis comparing consumer and server grade GPUs, and a CPU. We show the feasibility of using a full GPU decoding and particle tracking algorithm for high-throughput particle trajectories reconstruction, where our algorithm improves the throughput up to 7.4$\times$ compared to the LHCb baseline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源