论文标题
Anderson-Bernoulli在2D晶格上的大型疾病定位
Anderson-Bernoulli localization at large disorder on the 2D lattice
论文作者
论文摘要
我们考虑了$ \ mathbb {z}^2 $的大型疾病的Anderson模型,其中电势具有对称的Bernoulli分布。我们证明,安德森本地化发生在有限的许多能量之外。这些有限的能量是减去Laplacian的Dirichlet特征值,这些能量受到$ \ Mathbb {Z}^{2} $的某些有限子集的限制。
We consider the Anderson model at large disorder on $\mathbb{Z}^2$ where the potential has a symmetric Bernoulli distribution. We prove that Anderson localization happens outside a small neighborhood of finitely many energies. These finitely many energies are Dirichlet eigenvalues of the minus Laplacian restricted on some finite subsets of $\mathbb{Z}^{2}$.