论文标题

Danielewski表面上的圆柱体之间的同构

Isomorphisms between cylinders over Danielewski surfaces

论文作者

Moser-Jauslin, Lucy, Poloni, Pierre-Marie

论文摘要

特殊的Danielewski表面是一个仿射表面,是主$(\ Mathbb {C},+)$ - 捆绑的总空间。使用Danielewski引入的纤维产品技巧,众所周知,如果两个基部的起源数量相同,则始终在两个这样的表面上的圆柱体总是同构的。本说明的目的是提供一种明确的方法,以在特殊的Danielewski表面上找到圆柱体之间的同构。该方法基于适当的局部nilpotent推导的构建。

A special Danielewski surface is an affine surface which is the total space of a principal $(\mathbb{C},+)$-bundle over an affine line with a multiple origin. Using a fiber product trick introduced by Danielewski, it is known that cylinders over two such surfaces are always isomorphic provided that both bases have the same number of origins. The goal of this note is to give an explicit method to find isomorphisms between cylinders over special Danielewski surfaces. The method is based on the construction of appropriate locally nilpotent derivations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源