论文标题
对流对条纹稳定性的影响在平面图灵不稳定性附近的晶格
The impact of advection on the stability of stripes on lattices near planar Turing instabilities
论文作者
论文摘要
已知的条纹模式是在超临界图灵不稳定性下具有差异各向同性扩散的反应扩散系统中分叉的。在本文中,我们通过方向对流来研究弱各向异性对各种晶格模式的稳定性的影响,以及其中的二次术语的作用。我们专注于平面反应扩散系统的通用形式,其两个组件接近这种分叉。使用中心歧管降低,我们为晶格模式扰动的临界特征值(特别是平方和几乎六边形)得出了严格的参数扩展。这为对流和二次术语的影响提供了稳定边界基因座的详细公式。特别是,二次术语的众所周知的不稳定效果可以通过对流来平衡,这会导致稳定边界的有趣安排。我们通过一个特定示例以数字说明这些结果。最后,我们在扩展的Klausmeier模型中显示了这些稳定性边界的数值计算,用于植被模式,并在足够强大的对流的情况下稳定地表明条纹分叉。
Striped patterns are known to bifurcate in reaction-diffusion systems with differential isotropic diffusions at a supercritical Turing instability. In this paper we study the impact of weak anisotropy by directional advection on the stability of stripes with respect to various lattice modes, and the role of quadratic terms therein. We focus on the generic form of planar reaction-diffusion systems with two components near such a bifurcation. Using centre manifold reduction we derive a rigorous parameter expansion for the critical eigenvalues for lattice mode perturbations, specifically nearly square and nearly hexagonal ones. This provides detailed formulae for the loci of stability boundaries under the influence of the advection and quadratic terms. In particular, the well known destabilising effect of quadratic terms can be counterbalanced by advection, which leads to intriguing arrangements of stability boundaries. We illustrate these results numerically by a specific example. Finally, we show numerical computations of these stability boundaries in the extended Klausmeier model for vegetation patterns and show stripes bifurcate stably in the presence of sufficiently strong advection.