论文标题
在磁性拓扑绝缘子MNBI $ _ {2-x} $ sb $ _ {x} $ te $ _ {4} $
Realizing gapped surface states in magnetic topological insulator MnBi$_{2-x}$Sb$_{x}$Te$_{4}$
论文作者
论文摘要
磁性绝缘体(MTI)中磁性与非平凡拓扑之间的相互作用有望引起各种外来拓扑量子现象,例如量子异常霍尔(QAH)效应和拓扑轴承状态。评估这些新型特性的关键是在狄拉克表面带的交换间隙中调整费米水平。 MNBI $ _2 $ te $ _4 $具有具有内在的抗铁磁(AFM)状态的非平凡的带拓扑,但是可以实现所有这些量子状态,但是,MNBI $ _2 $ _2 $ _4 $ _4 $ _4 $的高度电子兴奋剂的性质阻碍了宽大的拓扑表面状态的展览。在这里,我们通过SB-sublebStitution量身定制材料,以揭示Mnbi $ _ {2-x} $ sb $ _ {x} $ te $ _ {4} $(MBST)中的间隙表面状态。通过将费米水平转移到MBST的块状带隙中,我们可以访问表面状态,并通过扫描隧道显微镜/光谱法(STM/STS)测量的准粒子干扰(QPI)的DIRAC点显示50 MEV的带隙。通过多种STM测量的运输光谱证实了表面降低的传导在Néel温度以下确认。尽管促进了场诱导的铁磁性,但表面带隙在平面外磁场上还是强大的。用较大的交换差距实现散装MTI,为探索新兴拓扑现象提供了有希望的平台。
The interplay between magnetism and non-trivial topology in magnetic topological insulators (MTI) is expected to give rise to a variety of exotic topological quantum phenomena, such as the quantum anomalous Hall (QAH) effect and the topological axion states. A key to assessing these novel properties is to tune the Fermi level in the exchange gap of the Dirac surface band. MnBi$_2$Te$_4$ possesses non-trivial band topology with intrinsic antiferromagnetic (AFM) state that can enable all of these quantum states, however, highly electron-doped nature of the MnBi$_2$Te$_4$ crystals obstructs the exhibition of the gapped topological surface states. Here, we tailor the material through Sb-substitution to reveal the gapped surface states in MnBi$_{2-x}$Sb$_{x}$Te$_{4}$ (MBST). By shifting the Fermi level into the bulk band gap of MBST, we access the surface states and show a band gap of 50 meV at the Dirac point from quasi-particle interference (QPI) measured by scanning tunneling microscopy/spectroscopy (STM/STS). Surface-dominant conduction is confirmed below the Néel temperature through transport spectroscopy measured by multiprobe STM. The surface band gap is robust against out-of-plane magnetic field despite the promotion of field-induced ferromagnetism. The realization of bulk-insulating MTI with the large exchange gap offers a promising platform for exploring emergent topological phenomena.