论文标题
FKB不变是3D指数
The FKB invariant is the 3d index
论文作者
论文摘要
我们确定了与Frohman和Kania-Bartoszynska与Dimofte-Gaiotto-Gukov的3D索引相关的与1效率的理想三角剖分相关的三角构造。这意味着Frohman的$ Q $ series和Kania-Bartoszynska的拓扑不变性用于屈曲的屈曲3型manifolds。相反,我们将Dimofte-Gaiotto-Gukov的四面体指数确定为量子6J符号的极限。
We identify the q-series associated to an 1-efficient ideal triangulation of a cusped hyperbolic 3-manifold by Frohman and Kania-Bartoszynska with the 3D-index of Dimofte-Gaiotto-Gukov. This implies the topological invariance of the $q$-series of Frohman and Kania-Bartoszynska for cusped hyperbolic 3-manifolds. Conversely, we identify the tetrahedron index of Dimofte-Gaiotto-Gukov as a limit of quantum 6j-symbols.