论文标题

使用私人原型的联合建议

Federating Recommendations Using Differentially Private Prototypes

论文作者

Ribero, Mónica, Henderson, Jette, Williamson, Sinead, Vikalo, Haris

论文摘要

机器学习方法使我们能够通过利用用户交互模式的相似性来向跨领域的应用程序中的用户提出建议。但是,在需要保护个人敏感数据(例如医学或银行业务)的域中,我们如何在不访问敏感数据的情况下学习这种模型,而不会无意间泄漏私人信息?我们提出了一种新的联邦方法,用于学习全球和本地私人模型,以供推荐,而无需收集原始数据,用户统计信息或有关个人偏好的信息。我们的方法产生了一组原型,使我们能够推断出全局的行为模式,同时为系统的任何数据库中的用户提供差异隐私保证。通过仅需要两轮沟通,我们都降低了沟通成本,并避免了与迭代程序相关的过度隐私损失。我们在合成数据以及实际联合医学数据和Movielens评级数据上测试我们的框架。我们显示了全球模型的本地适应性,我们的方法可以在基于矩阵重建的准确性和建议的相关性方面胜过基于基于矩阵的建议系统模型,同时保持可证明的隐私保证。我们还表明,与独立实体学到的单个模型相比,我们的方法更强大,其特征是差异较小。

Machine learning methods allow us to make recommendations to users in applications across fields including entertainment, dating, and commerce, by exploiting similarities in users' interaction patterns. However, in domains that demand protection of personally sensitive data, such as medicine or banking, how can we learn such a model without accessing the sensitive data, and without inadvertently leaking private information? We propose a new federated approach to learning global and local private models for recommendation without collecting raw data, user statistics, or information about personal preferences. Our method produces a set of prototypes that allows us to infer global behavioral patterns, while providing differential privacy guarantees for users in any database of the system. By requiring only two rounds of communication, we both reduce the communication costs and avoid the excessive privacy loss associated with iterative procedures. We test our framework on synthetic data as well as real federated medical data and Movielens ratings data. We show local adaptation of the global model allows our method to outperform centralized matrix-factorization-based recommender system models, both in terms of accuracy of matrix reconstruction and in terms of relevance of the recommendations, while maintaining provable privacy guarantees. We also show that our method is more robust and is characterized by smaller variance than individual models learned by independent entities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源