论文标题

野火科学与管理中的机器学习应用程序的综述

A review of machine learning applications in wildfire science and management

论文作者

Jain, Piyush, Coogan, Sean C P, Subramanian, Sriram Ganapathi, Crowley, Mark, Taylor, Steve, Flannigan, Mike D

论文摘要

自1990年代以来,人工智能已在野火科学和管理中应用,包括神经网络和专家系统在内。从那时起,该领域与环境科学中的机器学习(ML)的广泛采用一致。在这里,我们介绍了野火科学与管理中ML的范围评论。我们的目标是提高野火科学家和经理中ML的认识,并说明数据科学家可用的野火科学问题范围。我们首先介绍了迄今为止在野火科学中使用的流行ML方法,然后回顾它们在六个问题领域中在野火科学中的使用:1)燃料表征,火灾检测和映射; 2)火灾天气和气候变化; 3)发生火灾,敏感性和风险; 4)火灾行为预测; 5)火灾效应; 6)火灾管理。我们还讨论了各种ML方法的优势和局限性,并在数据科学环境中确定了野火科学和管理未来进步的机会。我们确定了298个相关出版物,其中最常用的ML方法包括随机森林,Maxent,人工神经网络,决策树,支持向量机器和遗传算法。有机会在野火科学中应用更多当前的ML方法(例如,深度学习和基于代理的学习)。但是,尽管ML模型能够自行学习,但在野火科学方面的专业知识对于确保跨多个尺度的火灾过程进行现实建模是必要的,而某些ML方法的复杂性则需要具有复杂的知识来实现​​其应用。最后,我们强调,野火研究和管理社区在提供相关的高质量数据中发挥了积极的作用,以供ML方法的从业者使用。

Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源