论文标题

可扩展网络生成的最新进展

Recent Advances in Scalable Network Generation

论文作者

Penschuck, Manuel, Brandes, Ulrik, Hamann, Michael, Lamm, Sebastian, Meyer, Ulrich, Safro, Ilya, Sanders, Peter, Schulz, Christian

论文摘要

随机图模型经常用作各个研究领域的实验活动的可控且通用的数据源。大规模生成此类数据集是一项非平凡的任务,因为它需要设计决策通常涵盖多个专业知识。挑战始于识别相关领域特定网络功能,继续存在如何将这些功能编译成可拖动模型的问题,并在实施有关模型的同时产生的算法细节。 在本调查中,我们探讨了具有已知可扩展发电机的随机图模型的关键方面。我们首先简要介绍此类模型考虑的网络功能,然后与生成算法一起讨论随机图。我们的重点在于已证明成功获得大量图的建模技术和算法原始素。我们考虑了各种领域(例如社交网络,基础架构,生态和数值模拟)的概念和图形模型,并讨论了不同计算模型的生成器(包括共享 - 记忆并行性,大规模平行的GPU和分布式系统)。

Random graph models are frequently used as a controllable and versatile data source for experimental campaigns in various research fields. Generating such data-sets at scale is a non-trivial task as it requires design decisions typically spanning multiple areas of expertise. Challenges begin with the identification of relevant domain-specific network features, continue with the question of how to compile such features into a tractable model, and culminate in algorithmic details arising while implementing the pertaining model. In the present survey, we explore crucial aspects of random graph models with known scalable generators. We begin by briefly introducing network features considered by such models, and then discuss random graphs alongside with generation algorithms. Our focus lies on modelling techniques and algorithmic primitives that have proven successful in obtaining massive graphs. We consider concepts and graph models for various domains (such as social network, infrastructure, ecology, and numerical simulations), and discuss generators for different models of computation (including shared-memory parallelism, massive-parallel GPUs, and distributed systems).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源