论文标题

可对照和学习的可区分分子模拟

Differentiable Molecular Simulations for Control and Learning

论文作者

Wang, Wujie, Axelrod, Simon, Gómez-Bombarelli, Rafael

论文摘要

分子动力学模拟在原子量表上使用统计力学,以实现基本机制的阐明和物质工程,以实现所需的任务。通常用通过哈密顿量或能量函数参数化的微分方程模拟分子系统在微观尺度上的行为。哈密​​顿人描述了系统的状态及其与环境的相互作用。为了得出预测性显微镜模型,人们希望推断出与观察到的宏观量相符的分子大麻。从工程的角度来看,人们希望控制哈密顿量,以实现所需的模拟结果和结构,就像在自组装和光学控制中一样,以实现实验室中所需的哈密顿量的系统。在这两种情况下,目标是修改哈密顿量,以使模拟系统的新兴特性与给定的目标匹配。我们证明了如何使用可区分的模拟来实现这一目标,在这些模拟中可以分析与哈密顿人分析,从而在分析中分析了分析,开辟了新的途径,以参数化汉密尔顿人来推断宏观模型并开发控制方案。

Molecular dynamics simulations use statistical mechanics at the atomistic scale to enable both the elucidation of fundamental mechanisms and the engineering of matter for desired tasks. The behavior of molecular systems at the microscale is typically simulated with differential equations parameterized by a Hamiltonian, or energy function. The Hamiltonian describes the state of the system and its interactions with the environment. In order to derive predictive microscopic models, one wishes to infer a molecular Hamiltonian that agrees with observed macroscopic quantities. From the perspective of engineering, one wishes to control the Hamiltonian to achieve desired simulation outcomes and structures, as in self-assembly and optical control, to then realize systems with the desired Hamiltonian in the lab. In both cases, the goal is to modify the Hamiltonian such that emergent properties of the simulated system match a given target. We demonstrate how this can be achieved using differentiable simulations where bulk target observables and simulation outcomes can be analytically differentiated with respect to Hamiltonians, opening up new routes for parameterizing Hamiltonians to infer macroscopic models and develop control protocols.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源