论文标题
使用距离依赖性特征提取从LIDAR数据中检测3D对象检测
3D Object Detection From LiDAR Data Using Distance Dependent Feature Extraction
论文作者
论文摘要
本文提出了一种新的3D对象检测方法,该方法利用了激光雷达传感器获得的数据的性质。最先进的检测器使用基于对相机图像有效的假设的神经网络体系结构。但是,从LIDAR获得的点云从根本上有所不同。大多数检测器使用共享的滤镜内核来提取不考虑点云特征范围的性质的功能。为了证明这一点,对Kitti数据集的两个拆分进行了训练:近距离范围(距LiDAR 25米)和远距离训练。顶视图图像是从点云中生成的,作为网络的输入。组合结果的表现优于在完整数据集上用单个骨干训练的基线网络。其他研究比较将点云转换为图像时使用不同输入特征的效果。结果表明,网络专注于对象的形状和结构,而不是输入的精确值。这项工作提出了通过考虑距离内激光点云的属性来改进3D对象检测器。结果表明,培训网络以近距离和远程对象的单独网络可提高所有Kitti基准难度的性能。
This paper presents a new approach to 3D object detection that leverages the properties of the data obtained by a LiDAR sensor. State-of-the-art detectors use neural network architectures based on assumptions valid for camera images. However, point clouds obtained from LiDAR are fundamentally different. Most detectors use shared filter kernels to extract features which do not take into account the range dependent nature of the point cloud features. To show this, different detectors are trained on two splits of the KITTI dataset: close range (objects up to 25 meters from LiDAR) and long-range. Top view images are generated from point clouds as input for the networks. Combined results outperform the baseline network trained on the full dataset with a single backbone. Additional research compares the effect of using different input features when converting the point cloud to image. The results indicate that the network focuses on the shape and structure of the objects, rather than exact values of the input. This work proposes an improvement for 3D object detectors by taking into account the properties of LiDAR point clouds over distance. Results show that training separate networks for close-range and long-range objects boosts performance for all KITTI benchmark difficulties.