论文标题

针对部分微分方程约束的反问题的超差异敏感性分析

Hyper-Differential Sensitivity Analysis for Inverse Problems Constrained by Partial Differential Equations

论文作者

Sunseri, Isaac, Hart, Joseph, Waanders, Bart van Bloemen, Alexanderian, Alen

论文摘要

许多科学和工程应用中使用的高保真模型将多个物理状态和参数融合在一起。当无法直接确定模型参数,而是使用状态测量(通常是稀疏和嘈杂的)测量来估计模型参数时会出现反问题。数据通常不足以同时告知所有参数。因此,管理模型通常包含不确定的参数,但必须为反转感兴趣的参数所需的完整模型表征指定。我们将附加模型参数(不倒置的)和测量数据状态的组合称为“互补参数”。我们试图量化这些互补参数对逆问题解决方案的相对重要性。为了解决这个问题,我们提出了一个基于超差异灵敏度分析(HDSA)的框架。 HDSA计算相对于互补参数的逆问题解的衍生物。我们在大规模PDE构成的反问题中提出了HDSA的数学框架,并显示如何解释HDSA以洞悉逆问题。我们通过在边界条件,源注入和扩散系数的多孔培养基流中估算渗透率和浓度测量,通过压力和浓度测量估算渗透率和浓度测量的有效性。

High fidelity models used in many science and engineering applications couple multiple physical states and parameters. Inverse problems arise when a model parameter cannot be determined directly, but rather is estimated using (typically sparse and noisy) measurements of the states. The data is usually not sufficient to simultaneously inform all of the parameters. Consequently, the governing model typically contains parameters which are uncertain but must be specified for a complete model characterization necessary to invert for the parameters of interest. We refer to the combination of the additional model parameters (those which are not inverted for) and the measured data states as the "complementary parameters". We seek to quantify the relative importance of these complementary parameters to the solution of the inverse problem. To address this, we present a framework based on hyper-differential sensitivity analysis (HDSA). HDSA computes the derivative of the solution of an inverse problem with respect to complementary parameters. We present a mathematical framework for HDSA in large-scale PDE-constrained inverse problems and show how HDSA can be interpreted to give insight about the inverse problem. We demonstrate the effectiveness of the method on an inverse problem by estimating a permeability field, using pressure and concentration measurements, in a porous medium flow application with uncertainty in the boundary conditions, source injection, and diffusion coefficient.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源