论文标题

符号符号不变性的平行计算的即时优化

On-the-fly Optimization of Parallel Computation of Symbolic Symplectic Invariants

论文作者

Geloun, Joseph Ben, Coti, Camille, Malony, Allen D.

论文摘要

在高能物理学中使用组不变性来定义量子场理论相互作用。在本文中,我们介绍了称为Symphectic的特殊不变式的平行代数计算,甚至专注于一种对物理学兴趣的特定不变式。我们的结果将导出到其他不变性。在计算过程中,随着多项式较大或术语数量越来越多,对涉及的多元多项式进行基本计算的成本会不断发展。但是,在某些情况下,它们保持很小。传统上,通过在较小的数据集上运行高性能软件来优化高性能软件,以便使用分析信息来设置一些调谐参数。由于(通信和计算)成本在计算过程中的发展,因此计算的第一个迭代可能无法代表其余计算,在这种情况下不能应用此方法。为了应对这种演变,我们正在提出一种获取性能数据并在执行过程中调整算法的方法。

Group invariants are used in high energy physics to define quantum field theory interactions. In this paper, we are presenting the parallel algebraic computation of special invariants called symplectic and even focusing on one particular invariant that finds recent interest in physics. Our results will export to other invariants. The cost of performing basic computations on the multivariate polynomials involved evolves during the computation, as the polynomials get larger or with an increasing number of terms. However, in some cases, they stay small. Traditionally, high-performance software is optimized by running it on a smaller data set in order to use profiling information to set some tuning parameters. Since the (communication and computation) costs evolve during the computation, the first iterations of the computation might not be representative of the rest of the computation and this approach cannot be applied in this case. To cope with this evolution, we are presenting an approach to get performance data and tune the algorithm during the execution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源