论文标题
使用基于层次行为的仲裁方案为自动化车辆的决策
Decision-Making for Automated Vehicles Using a Hierarchical Behavior-Based Arbitration Scheme
论文作者
论文摘要
行为计划和决策是高度自动化系统的一些最大挑战。全自动车辆(AV)面临着许多战术和战略选择。大多数最先进的AV平台使用有限的状态机实施战术和战略行为。但是,这些通常会导致可解释性,可维护性和可伸缩性。机器人技术的研究提出了许多架构来减轻这些问题,最有趣的是基于行为的系统和混合衍生物。受这些方法的启发,我们为自动驾驶中的战术和战略行为生成基于层次的架构。这是一个概括性可扩展的决策框架,利用模块化行为块在自下而上的方法中构成更复杂的行为。该系统能够将各种方案和特定于方法的解决方案(如POMDPS,RRT*或基于学习的行为)结合到一个可理解且可追溯的架构中。我们将基于层次的行为仲裁概念扩展到解决方案,这些方案适用于多个行为选项,但彼此之间没有明确的优先级。然后,我们制定了在城市和高速公路环境中自动驾驶的行为堆栈,还包括停车和紧急行为。最后,我们在解释性评估中说明了我们的设计。
Behavior planning and decision-making are some of the biggest challenges for highly automated systems. A fully automated vehicle (AV) is confronted with numerous tactical and strategical choices. Most state-of-the-art AV platforms implement tactical and strategical behavior generation using finite state machines. However, these usually result in poor explainability, maintainability and scalability. Research in robotics has raised many architectures to mitigate these problems, most interestingly behavior-based systems and hybrid derivatives. Inspired by these approaches, we propose a hierarchical behavior-based architecture for tactical and strategical behavior generation in automated driving. It is a generalizing and scalable decision-making framework, utilizing modular behavior blocks to compose more complex behaviors in a bottom-up approach. The system is capable of combining a variety of scenario- and methodology-specific solutions, like POMDPs, RRT* or learning-based behavior, into one understandable and traceable architecture. We extend the hierarchical behavior-based arbitration concept to address scenarios where multiple behavior options are applicable but have no clear priority against each other. Then, we formulate the behavior generation stack for automated driving in urban and highway environments, incorporating parking and emergency behaviors as well. Finally, we illustrate our design in an explanatory evaluation.