论文标题

推断疾病建模的高分辨率人混合模式

Inferring high-resolution human mixing patterns for disease modeling

论文作者

Mistry, Dina, Litvinova, Maria, Piontti, Ana Pastore y, Chinazzi, Matteo, Fumanelli, Laura, Gomes, Marcelo F. C., Haque, Syed A., Liu, Quan-Hui, Mu, Kunpeng, Xiong, Xinyue, Halloran, M. Elizabeth, Longini Jr., Ira M., Merler, Stefano, Ajelli, Marco, Vespignani, Alessandro

论文摘要

在分析和预测传染病流行病中,数学和计算建模方法越来越多地用作定量工具。然而,对解决复杂公共卫生问题的现实主义的需求日益增长的是,呼吁建立控制疾病传播过程的人类接触模式的准确模型。在这里,我们提出了一种数据驱动的方法,通过使用高度详细的宏(人口普查)和微观(调查)数据来生成人口级接触模式的有效描述。我们为277个占地约35亿人口的国家的次国行政区域生产了年龄分层的接触矩阵,并反映了重点国家的高度文化和社会多样性。我们使用派生的接触矩阵来对空气传染病的传播进行建模,并表明人类混合模式中的亚国家异质性对流行病指标(例如同一病因的繁殖数量和总体攻击率)具有显着影响。此处得出的接触模式可公开作为建模工具,用于研究人群之间社会经济差异和人口异质性对传染病流行病学的影响。

Mathematical and computational modeling approaches are increasingly used as quantitative tools in the analysis and forecasting of infectious disease epidemics. The growing need for realism in addressing complex public health questions is however calling for accurate models of the human contact patterns that govern the disease transmission processes. Here we present a data-driven approach to generate effective descriptions of population-level contact patterns by using highly detailed macro (census) and micro (survey) data on key socio-demographic features. We produce age-stratified contact matrices for 277 sub-national administrative regions of countries covering approximately 3.5 billion people and reflecting the high degree of cultural and societal diversity of the focus countries. We use the derived contact matrices to model the spread of airborne infectious diseases and show that sub-national heterogeneities in human mixing patterns have a marked impact on epidemic indicators such as the reproduction number and overall attack rate of epidemics of the same etiology. The contact patterns derived here are made publicly available as a modeling tool to study the impact of socio-economic differences and demographic heterogeneities across populations on the epidemiology of infectious diseases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源