论文标题

使用尖峰小脑模型对类人类ICUB机器人的VOR适应

VOR Adaptation on a Humanoid iCub Robot Using a Spiking Cerebellar Model

论文作者

Naveros, Francisco, Luque, Niceto R., Ros, Eduardo, Arleo, Angelo

论文摘要

我们将尖峰小脑模型嵌入了自适应实时(RT)控制环中,该电路可以在执行不同的前庭 - 眼反射(VOR)任务时能够操作真实的机器人体(ICUB)。尖峰神经网络计算,包括事件和时间驱动的神经动力学,神经活动和峰值依赖性可塑性(STDP)机制,导致由小脑模拟过程中遇到的神经活动脉络性引起的非确定计算时间。这个非确定的计算时间激发了RT主管模块的整合,该模块能够确保精心策划的神经计算时间和机器人操作。实际上,我们的神经动物实验设置(VOR)受益于小脑和身体之间的生物感觉运动延迟,以缓冲计算过载,并为调整神经计算时间和RT操作提供灵活性。 RT主管模块提供了增量对策,通过停止模拟或禁用某些神经计算功能(即STDP机制,尖峰传播和神经更新),以动态减慢或加快小脑模拟,以应对实际机器人操作所施加的RT约束。这种神经生物的实验设置应用于不同的水平和垂直自适应任务,这些任务被神经科学社区广泛使用,以解决小脑功能。我们旨在阐明小脑神经底物和分布的可塑性的组合形状的小脑神经活动以介导运动适应的方式。本文是需要进行两阶段学习过程以促进VOR获取的必要条件。

We embed a spiking cerebellar model within an adaptive real-time (RT) control loop that is able to operate a real robotic body (iCub) when performing different vestibulo-ocular reflex (VOR) tasks. The spiking neural network computation, including event- and time-driven neural dynamics, neural activity, and spike-timing dependent plasticity (STDP) mechanisms, leads to a nondeterministic computation time caused by the neural activity volleys encountered during cerebellar simulation. This nondeterministic computation time motivates the integration of an RT supervisor module that is able to ensure a well-orchestrated neural computation time and robot operation. Actually, our neurorobotic experimental setup (VOR) benefits from the biological sensory motor delay between the cerebellum and the body to buffer the computational overloads as well as providing flexibility in adjusting the neural computation time and RT operation. The RT supervisor module provides for incremental countermeasures that dynamically slow down or speed up the cerebellar simulation by either halting the simulation or disabling certain neural computation features (i.e., STDP mechanisms, spike propagation, and neural updates) to cope with the RT constraints imposed by the real robot operation. This neurorobotic experimental setup is applied to different horizontal and vertical VOR adaptive tasks that are widely used by the neuroscientific community to address cerebellar functioning. We aim to elucidate the manner in which the combination of the cerebellar neural substrate and the distributed plasticity shapes the cerebellar neural activity to mediate motor adaptation. This paper underlies the need for a two-stage learning process to facilitate VOR acquisition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源