论文标题

准确的安排

Accurate Arrangements

论文作者

Mücksch, Paul, Roehrle, Gerhard

论文摘要

令$ \ mathscr a $为排名$ \ ell $的Coxeter安排。 1987年,所罗门和terao在1987年提出,每$ 1 \ leq d \ leq \ ell $,$ \ mathscr a $的前一个$ d $指数(以越来越多的顺序列出时)被实现为$ \ mathscr a $ a $ a $ n $ n $ n $ n $ dryplans $ d $ d $ a $ a a $ a a $ a a $ a的免费限制的指数。这种猜想的确来自Orlik和Terao从1992年和1993年进行的相当广泛的逐案研究,他们表明对Coxeter布置的所有限制都是免费的。我们将这种自然财产涉及其自由限制准确的一般免费安排。在本文中,我们初始化了他们的系统研究。我们的主要结果表明,Cuntz和Mücksch最近提出的无垫布置是准确的。该定理反过来直接暗示了Weyl排列的所有理想子系接头的特殊属性。特别是,这给出了上述构想的新的,更简单,更统一的证明,用于Weyl排列,而无需任何情况考虑,这是Weyl排列的。我们主要定理的更一般配方的另一种应用表明,扩展的SHI安排,扩展的加泰罗尼亚安排和理想什叶派安排也共享此属性。我们还研究满足条件稍弱的安排,称为几乎准确的布置,我们只是无视所涉及的指数的顺序。反过来,这种属性又被许多富裕的概念所暗示,例如超透明性和分区的弗雷尼斯。

Let $\mathscr A$ be a Coxeter arrangement of rank $\ell$. In 1987 Orlik, Solomon and Terao conjectured that for every $1\leq d \leq \ell$, the first $d$ exponents of $\mathscr A$ -- when listed in increasing order -- are realized as the exponents of a free restriction of $\mathscr A$ to some intersection of reflecting hyperplanes of $\mathscr A$ of dimension $d$. This conjecture does follow from rather extensive case-by-case studies by Orlik and Terao from 1992 and 1993, where they show that all restrictions of Coxeter arrangements are free. We call a general free arrangements with this natural property involving their free restrictions accurate. In this paper we initialize their systematic study. Our principal result shows that MAT-free arrangements, a notion recently introduced by Cuntz and Mücksch, are accurate. This theorem in turn directly implies this special property for all ideal subarrangements of Weyl arrangements. In particular, this gives a new, simpler and uniform proof of the aforementioned conjecture of Orlik, Solomon and Terao for Weyl arrangements which is free of any case-by-case considerations. Another application of a slightly more general formulation of our main theorem shows that extended Shi arrangements, extended Catalan arrangements and ideal-Shi arrangements share this property as well. We also study arrangements that satisfy a slightly weaker condition, called almost accurate arrangements, where we simply disregard the ordering of the exponents involved. This property in turn is implied by many well established concepts of freeness such as supersolvability and divisional freeness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源