论文标题

通过可解释的机器学习在晶格场理论中进行新颖的见解

Towards Novel Insights in Lattice Field Theory with Explainable Machine Learning

论文作者

Bluecher, Stefan, Kades, Lukas, Pawlowski, Jan M., Strodthoff, Nils, Urban, Julian M.

论文摘要

机器学习有可能通过蒙特卡洛样品的统计分析来帮助我们理解晶格量子场理论中的相结构。可用的算法,尤其是基于深度学习的算法,通常在搜索以前未知的特征时表现出显着的性能,但是如果适应性地应用,则往往缺乏透明度。为了解决这些缺点,我们提出了与可解释性方法相结合的表示形式学习,作为识别可观察的框架。更具体地说,我们在使用层的相关性传播(LRP)的同时,将动作参数回归作为借口任务,根据相图中的位置来识别最重要的可观察物。该方法在(2+1)d中的标量Yukawa模型的背景下进行。首先,我们研究了多层感知器,以确定几个预定义的标准可观察物的重要性层次结构。然后,使用卷积网络将该方法直接应用于原场配置,以证明从学习的滤波器权重重建所有订单参数的能力。根据我们的结果,我们认为,由于其广泛的适用性,诸如LRP之类的归因方法可以证明我们在搜索新的物理见解时是有用且通用的工具。在Yukawa模型的情况下,它有助于构建具有对称阶段的可观察到的。

Machine learning has the potential to aid our understanding of phase structures in lattice quantum field theories through the statistical analysis of Monte Carlo samples. Available algorithms, in particular those based on deep learning, often demonstrate remarkable performance in the search for previously unidentified features, but tend to lack transparency if applied naively. To address these shortcomings, we propose representation learning in combination with interpretability methods as a framework for the identification of observables. More specifically, we investigate action parameter regression as a pretext task while using layer-wise relevance propagation (LRP) to identify the most important observables depending on the location in the phase diagram. The approach is put to work in the context of a scalar Yukawa model in (2+1)d. First, we investigate a multilayer perceptron to determine an importance hierarchy of several predefined, standard observables. The method is then applied directly to the raw field configurations using a convolutional network, demonstrating the ability to reconstruct all order parameters from the learned filter weights. Based on our results, we argue that due to its broad applicability, attribution methods such as LRP could prove a useful and versatile tool in our search for new physical insights. In the case of the Yukawa model, it facilitates the construction of an observable that characterises the symmetric phase.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源