论文标题

二进制复发,两者的力量正在区分模量

Binary recurrences for which powers of two are discriminating moduli

论文作者

de Clercq, A., Luca, F., Martirosyan, L., Matthis, M., Moree, P., Stoumen, M. A., Weiß, M.

论文摘要

给定一系列独特的积极整数$ w_0,w_1,w_2,\ ldots $和任何积极整数$ n $,我们定义了区分函数$ \ mathcal {d} _ {\ bf w} _ {\ bf w} modulo $ m $。 In this paper, we classify all binary recurrent sequences $\{w_n\}_{n\geq 0}$ consisting of different integer terms such that $\mathcal{D}_{\bf w}(2^e)=2^e$ for every $e\geq 1.$ For all of these sequences it is expected that one can actually give a fairly simple description of $ \ Mathcal {d} _ {\ bf w}(n)$对于每个$ n \ ge 1. $ $ $ $ $ $对于此类序列的两个无限家庭,这已经在2019年由Faye,Luca等人在2019年完成,分别是Ciolan和Moree。

Given a sequence of distinct positive integers $w_0 , w_1, w_2, \ldots$ and any positive integer $n$, we define the discriminator function $\mathcal{D}_{\bf w}(n)$ to be the smallest positive integer $m$ such that $w_0,\ldots, w_{n-1}$ are pairwise incongruent modulo $m$. In this paper, we classify all binary recurrent sequences $\{w_n\}_{n\geq 0}$ consisting of different integer terms such that $\mathcal{D}_{\bf w}(2^e)=2^e$ for every $e\geq 1.$ For all of these sequences it is expected that one can actually give a fairly simple description of $\mathcal{D}_{\bf w}(n)$ for every $n\ge 1.$ For two infinite families of such sequences this has been done already in 2019 by Faye, Luca and Moree, respectively Ciolan and Moree.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源