论文标题

跨宽基线的图像匹配:从纸到练习

Image Matching across Wide Baselines: From Paper to Practice

论文作者

Jin, Yuhe, Mishkin, Dmytro, Mishchuk, Anastasiia, Matas, Jiri, Fua, Pascal, Yi, Kwang Moo, Trulls, Eduard

论文摘要

我们为本地功能和强大的估计算法介绍了一个全面的基准测试,重点是下游任务 - 重建相机姿势的准确性 - 作为我们的主要指标。我们的管道的模块化结构可以轻松地集成,配置和不同方法和启发式方法的组合。从开创性的作品到机器学习研究的最前沿,通过嵌入数十种流行算法并评估它们来证明这一点。我们表明,通过适当的设置,经典解决方案仍然可能超过感知的最新状态。 除了建立艺术的实际状态外,进行的实验还揭示了运动(SFM)管道的结构意外特性,可以帮助提高其算法和学习方法的性能。数据和代码在线https://github.com/vcg-uvic/image-matching-benchmark,为本地功能的基准和强大的估计方法提供了易于使用且灵活的框架,以及与表现最好的方法一起。这项工作为匹配挑战的基础https://vision.uvic.ca/image-matching-challenge提供了基础。

We introduce a comprehensive benchmark for local features and robust estimation algorithms, focusing on the downstream task -- the accuracy of the reconstructed camera pose -- as our primary metric. Our pipeline's modular structure allows easy integration, configuration, and combination of different methods and heuristics. This is demonstrated by embedding dozens of popular algorithms and evaluating them, from seminal works to the cutting edge of machine learning research. We show that with proper settings, classical solutions may still outperform the perceived state of the art. Besides establishing the actual state of the art, the conducted experiments reveal unexpected properties of Structure from Motion (SfM) pipelines that can help improve their performance, for both algorithmic and learned methods. Data and code are online https://github.com/vcg-uvic/image-matching-benchmark, providing an easy-to-use and flexible framework for the benchmarking of local features and robust estimation methods, both alongside and against top-performing methods. This work provides a basis for the Image Matching Challenge https://vision.uvic.ca/image-matching-challenge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源