论文标题
网络流量监控和分析的大数据调查
A Survey on Big Data for Network Traffic Monitoring and Analysis
论文作者
论文摘要
网络流量监视和分析(NTMA)代表网络管理的关键组件,尤其是确保大型网络(例如Internet)的正确操作。随着Internet服务的复杂性和流量量的继续增加,很难设计可扩展的NTMA应用程序。诸如交通分类和警务等应用程序需要实时和可扩展的方法。异常检测和安全机制需要在处理数百万个异质事件的同时快速识别和反应不可预测的事件。最后,该系统必须收集,存储和处理大量的历史数据集,以进行验尸分析。这些正是一般大数据方法面临的挑战:数量,速度,多样性和真实性。这项调查汇集了NTMA和大数据。我们对NTMA的先前工作进行了分类,该工作采用了大数据方法来了解在NTMA中探索大数据的潜力的程度。这项调查主要集中在管理大型NTMA数据的方法和技术上,另外简要讨论了为NTMA而言,大数据分析(例如机器学习)。最后,我们为将来的工作提供指南,讨论经验教训和研究方向。
Network Traffic Monitoring and Analysis (NTMA) represents a key component for network management, especially to guarantee the correct operation of large-scale networks such as the Internet. As the complexity of Internet services and the volume of traffic continue to increase, it becomes difficult to design scalable NTMA applications. Applications such as traffic classification and policing require real-time and scalable approaches. Anomaly detection and security mechanisms require to quickly identify and react to unpredictable events while processing millions of heterogeneous events. At last, the system has to collect, store, and process massive sets of historical data for post-mortem analysis. Those are precisely the challenges faced by general big data approaches: Volume, Velocity, Variety, and Veracity. This survey brings together NTMA and big data. We catalog previous work on NTMA that adopt big data approaches to understand to what extent the potential of big data is being explored in NTMA. This survey mainly focuses on approaches and technologies to manage the big NTMA data, additionally briefly discussing big data analytics (e.g., machine learning) for the sake of NTMA. Finally, we provide guidelines for future work, discussing lessons learned, and research directions.