论文标题
来自经历开尔文 - 赫尔姆霍尔兹委员
Ly$α$ Blobs from Cold Streams Undergoing Kelvin-Helmholtz Instabilities
论文作者
论文摘要
我们提出了一个分析玩具模型,该模型是通过被认为在高红移和热CGM处供应大量光环的冷水之间的相互作用所产生的辐射模型。首先,我们在流入旋转病毒半径时为宇宙学动机的参数($ r _ {\ rm V} $作为Halo Mass和RedShift的函数。对于$ 10^{12} m _ {\ odot} $ halos in $ z = 2 $,我们发现流中的氢数密度为$ n _ {\ rm h,s} \ sim(0.1-5)\ sim(0.1-5)\ sim(0.1-5)\ sim 10^{ - 2} { - 2} { - time time time time time time time time time time time sim sim 3 30 $ 3} $ 3} $ use,热CGM密度,而流半径在$ r _ {\ rm s} \ sim(0.03-0.50)r _ {\ rm V} $的范围内。随着溪流朝着光环中心加速,它们变得更加狭窄。流-CGM相互作用诱导开尔文 - 赫尔姆霍尔茨不稳定性(KHI),这导致溪流夹带CGM质量,因此通过势头保护流式减速。假设Mandelker等人得出的夹带率。在没有重力的情况下,2019年可以在每个卤中心半径上局部应用,我们得出了光环中流动的运动方程。使用这些,对于不同的CGM密度曲线,我们得出了由流-CGM相互作用引起的净加速度,质量生长和能量耗散的函数。对于考虑的模型参数范围,我们发现交互可以诱导耗散照明$ l _ {\ rm diss}> 10^{42}〜{\ rm erg〜s^{ - 1}} $ in $ 0.6 r _ { v}> 10^{12} m _ {\ odot} $ at $ z = 2 $,带有halo质量的发射缩放和红移大约为$ \ propto m _ {\ rm v} \,(1+z)^2 $。在高红移时大量晕孔产生的发射的幅度和空间范围与观察到的$α$斑点一致,尽管需要更好地治疗紫外线背景和自挡疗法来巩固这一结论。
We present an analytic toy model for the radiation produced by the interaction between the cold streams thought to feed massive halos at high redshift and their hot CGM. We begin by deriving cosmologically motivated parameters for the streams as they enter the halo virial radius, $R_{\rm v}$, as a function of halo mass and redshift. For $10^{12}M_{\odot}$ halos at $z=2$, we find the Hydrogen number density in streams to be $n_{\rm H,s}\sim (0.1-5)\times 10^{-2}{\rm cm}^{-3}$, a factor of $δ\sim (30-300)$ times denser than the hot CGM density, while the stream radii are in the range $R_{\rm s}\sim (0.03-0.50)R_{\rm v}$. As the streams accelerate towards the halo centre, they become denser and narrower. The stream-CGM interaction induces Kelvin-Helmholtz Instability (KHI), which leads to entrainment of CGM mass by the stream and therefore to stream deceleration by momentum conservation. Assuming that the entrainment rates derived by Mandelker et al. 2019 in the absence of gravity can be applied locally at each halocentric radius, we derive equations of motion for the stream in the halo. Using these, we derive the net acceleration, mass growth, and energy dissipation induced by the stream-CGM interaction, as a function of halo mass and redshift, for different CGM density profiles. For the range of model parameters considered, we find that the interaction can induce dissipation luminosities $L_{\rm diss}>10^{42}~{\rm erg~s^{-1}}$ within $\le 0.6 R_{\rm v}$ of halos with $M_{\rm v}>10^{12}M_{\odot}$ at $z=2$, with the emission scaling with halo mass and redshift approximately as $\propto M_{\rm v}\,(1+z)^2$. The magnitude and spatial extent of the emission produced in massive halos at high redshift is consistent with observed Ly$α$ blobs, though better treatment of the UV background and self-shielding is needed to solidify this conclusion.