论文标题

Alfnoor:Ariel目标列表的检索模拟

Alfnoor: A Retrieval Simulation of the Ariel Target List

论文作者

Changeat, Quentin, Al-Refaie, Ahmed, Mugnai, Lorenzo V., Edwards, Billy, Waldmann, Ingo P., Pascale, Enzo, Tinetti, Giovanna

论文摘要

在这项工作中,我们提出了Alfnoor,这是一种专门的工具,可针对系外行星大气的人群研究进行优化。 Alfnoor结合了最新版本的检索算法TAUREX 3和仪器噪声模拟器Arielrad,并启用了大量exo-Atmospheres样本的同时检索分析。我们将此工具应用于行星候选者的Ariel列表,并专注于以氢为主的氢气,在使用Tier-2模式(中等ARIEL分辨率)中观察到的多云气氛。作为第一个实验,我们将丰度随机化 - 从10 $^{ - 7} $到10 $^{ - 2} $的痕迹气体,其中包括H $ _2 $ _2 $ o,ch $ _4 $,CO,CO $ _2 $和NH $ _3 $。当存在云时,该练习允许估计Ariel Tier-2和Tier-3模式的检测极限。在第二个实验中,我们实现了化学物种与行星有效温度之间的任意趋势。最后一个实验需要在一定温度下取决于平衡化学的分子丰度。我们的结果表明,Ariel Tier-2和Tier-3调查揭示化学和相关行星参数之间趋势的能力。未来的工作将集中在日食数据上,大气比氢更重,并将应用于其他观测员。

In this work, we present Alfnoor, a dedicated tool optimised for population studies of exoplanet atmospheres. Alfnoor combines the latest version of the retrieval algorithm TauREx 3, with the instrument noise simulator ArielRad and enables the simultaneous retrieval analysis of a large sample of exo-atmospheres. We applied this tool to the Ariel list of planetary candidates and focus on hydrogen dominated, cloudy atmospheres observed in transit with the Tier-2 mode (medium Ariel resolution). As a first experiment, we randomised the abundances - ranging from 10$^{-7}$ to 10$^{-2}$ - of the trace gases, which include H$_2$O, CH$_4$, CO, CO$_2$ and NH$_3$. This exercise allowed to estimate the detection limits for Ariel Tier-2 and Tier-3 modes when clouds are present. In a second experiment, we imposed an arbitrary trend between a chemical species and the effective temperature of the planet. A last experiment was run requiring molecular abundances being dictated by equilibrium chemistry at a certain temperature. Our results demonstrate the ability of Ariel Tier-2 and Tier-3 surveys to reveal trends between the chemistry and associated planetary parameters. Future work will focus on eclipse data, on atmospheres heavier than hydrogen and will be applied also to other observatories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源